Problem 3.33

Sequential measurements. An operator \hat{A}, representing observable A, has two (normalized) eigenstates ψ_{1} and ψ_{2}, with eigenvalues a_{1} and a_{2}, respectively. Operator \hat{B}, representing observable B, has two (normalized) eigenstates ϕ_{1} and ϕ_{2}, with eigenvalues b_{1} and b_{2}. The eigenstates are related by

$$
\psi_{1}=\left(3 \phi_{1}+4 \phi_{2}\right) / 5, \quad \psi_{2}=\left(4 \phi_{1}-3 \phi_{2}\right) / 5 .
$$

(a) Observable A is measured, and the value a_{1} is obtained. What is the state of the system (immediately) after this measurement?
(b) If B is now measured, what are the possible results, and what are their probabilities?
(c) Right after the measurement of B, A is measured again. What is the probability of getting a_{1} ? (Note that the answer would be quite different if I had told you the outcome of the B measurement.)

Solution

Write down the eigenvalue problems for \hat{A} and \hat{B}.

$$
\hat{A}\left|\psi_{n}\right\rangle=a_{n}\left|\psi_{n}\right\rangle, \quad n=1,2 \quad \hat{B}\left|\phi_{n}\right\rangle=b_{n}\left|\phi_{n}\right\rangle, \quad n=1,2
$$

Let the state vector $|\mathcal{S}\rangle$ represent the system prior to measurement. Since observable A is to be measured first, expand $|\mathcal{S}\rangle$ in terms of the eigenstates, $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$, using the projection operator.

$$
\begin{aligned}
|\mathcal{S}\rangle & =\hat{I}|\mathcal{S}\rangle \\
& =\left(\sum_{n=1}^{2}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|\right)|\mathcal{S}\rangle \\
& =\sum_{n=1}^{2}\left|\psi_{n}\right\rangle\left\langle\psi_{n} \mid \mathcal{S}\right\rangle \\
& =\sum_{n=1}^{2}\left|\psi_{n}\right\rangle a_{n} \\
& =\sum_{n=1}^{2} a_{n}\left|\psi_{n}\right\rangle \\
& =a_{1}\left|\psi_{1}\right\rangle+a_{2}\left|\psi_{2}\right\rangle
\end{aligned}
$$

Mathematically, $\left\langle\psi_{n} \mid \mathcal{S}\right\rangle$ is interpreted as the component of $|\mathcal{S}\rangle$ along $\left|\psi_{n}\right\rangle$. Physically, $\left\langle\psi_{n} \mid \mathcal{S}\right\rangle$ is interpreted as the value of observable A measured in the lab as the system changes from state $|\mathcal{S}\rangle$ to state $\left|\psi_{n}\right\rangle$. Whether a_{1} or a_{2} is obtained can't be said for certain before the measurement, but the probabilities, $P\left(a_{1}\right)$ and $P\left(a_{2}\right)$, can be computed by using projection operators again.

Begin with the basic formula relating these probabilities with the expectation value of A.

$$
\begin{aligned}
& \sum_{n=1}^{2} a_{n} P\left(a_{n}\right)=\langle A\rangle=\frac{\langle\mathcal{S}| \hat{A}|\mathcal{S}\rangle}{\langle\mathcal{S} \mid \mathcal{S}\rangle} \\
& =\frac{\langle\mathcal{S}| \hat{I} \hat{A} \hat{I}|\mathcal{S}\rangle}{\left(a_{1}^{*}\left\langle\psi_{1}\right|+a_{2}^{*}\left\langle\psi_{2}\right|\right)\left(a_{1}\left|\psi_{1}\right\rangle+a_{2}\left|\psi_{2}\right\rangle\right)} \\
& =\frac{\langle\mathcal{S}|\left(\sum_{m=1}^{2}\left|\psi_{m}\right\rangle\left\langle\psi_{m}\right|\right) \hat{A}\left(\sum_{n=1}^{2}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|\right)|\mathcal{S}\rangle}{a_{1}^{*} a_{1}\left\langle\psi_{1} \mid \psi_{1}\right\rangle+a_{1}^{*} a_{2}\left\langle\psi_{1} \mid \psi_{2}\right\rangle+a_{2}^{*} a_{1}\left\langle\psi_{2} \mid \psi_{1}\right\rangle+a_{2}^{*} a_{2}\left\langle\psi_{2} \mid \psi_{2}\right\rangle} \\
& =\frac{\sum_{m=1}^{2} \sum_{n=1}^{2}\left\langle\mathcal{S} \mid \psi_{m}\right\rangle\left\langle\psi_{m}\right| \cdot\left(\hat{A}\left|\psi_{n}\right\rangle\right)\left\langle\psi_{n} \mid \mathcal{S}\right\rangle}{a_{1}^{*} a_{1}+a_{2}^{*} a_{2}} \\
& =\frac{\sum_{m=1}^{2} \sum_{n=1}^{2}\left\langle\mathcal{S} \mid \psi_{m}\right\rangle\left\langle\psi_{m}\right| \cdot\left(a_{n}\left|\psi_{n}\right\rangle\right)\left\langle\psi_{n} \mid \mathcal{S}\right\rangle}{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}} \\
& =\frac{\sum_{m=1}^{2} \sum_{n=1}^{2} a_{n}\left\langle\mathcal{S} \mid \psi_{m}\right\rangle\left\langle\psi_{m} \mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid \mathcal{S}\right\rangle}{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}} \\
& =\frac{\sum_{m=1}^{2} \sum_{n=1}^{2} a_{n}\left\langle\mathcal{S} \mid \psi_{m}\right\rangle \delta_{m n}\left\langle\psi_{n} \mid \mathcal{S}\right\rangle}{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}} \\
& =\frac{\sum_{n=1}^{2} a_{n}\left\langle\mathcal{S} \mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid \mathcal{S}\right\rangle}{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}} \\
& =\frac{\sum_{n=1}^{2} a_{n}\left\langle\psi_{n} \mid \mathcal{S}\right\rangle^{*}\left\langle\psi_{n} \mid \mathcal{S}\right\rangle}{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}} \\
& =\frac{\sum_{n=1}^{2} a_{n}\left|\left\langle\psi_{n} \mid \mathcal{S}\right\rangle\right|^{2}}{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}} \\
& =\frac{\sum_{n=1}^{2} a_{n}\left|a_{n}\right|^{2}}{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}}=\sum_{n=1}^{2} a_{n}\left(\frac{\left|a_{n}\right|^{2}}{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}}\right)
\end{aligned}
$$

Consequently, the probabilities of getting a_{1} and a_{2} are

$$
P\left(a_{1}\right)=\frac{\left|a_{1}\right|^{2}}{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}} \quad \text { and } \quad P\left(a_{2}\right)=\frac{\left|a_{2}\right|^{2}}{\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}}
$$

As a result of measuring the observable A and getting a_{1}, the state vector changes to $\left|\psi_{1}\right\rangle$.

$$
\left|\psi_{1}\right\rangle=\frac{3}{5}\left|\phi_{1}\right\rangle+\frac{4}{5}\left|\phi_{2}\right\rangle
$$

If B is then measured, there are two possible results, b_{1} and b_{2}, which lead to the system's state vector changing to $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$, respectively. To determine the probabilities of getting b_{1} and b_{2}, write $\langle B\rangle$ in terms of $\left|\psi_{1}\right\rangle$ and then use the projection operators written in terms of $\left|\phi_{n}\right\rangle$.

$$
\begin{aligned}
\sum_{n=1}^{2} b_{n} P\left(b_{n}\right)=\langle B\rangle & =\frac{\left\langle\psi_{1}\right| \hat{B}\left|\psi_{1}\right\rangle}{\left\langle\psi_{1} \mid \psi_{1}\right\rangle} \\
& =\frac{\left\langle\psi_{1}\right| \hat{I} \hat{B} \hat{I}\left|\psi_{1}\right\rangle}{\left(\frac{3}{5}\left\langle\phi_{1}\right|+\frac{4}{5}\left\langle\phi_{2}\right|\right)\left(\frac{3}{5}\left|\phi_{1}\right\rangle+\frac{4}{5}\left|\phi_{2}\right\rangle\right)} \\
& =\frac{\left\langle\psi_{1}\right|\left(\sum_{m=1}^{2}\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right|\right) \hat{B}\left(\sum_{n=1}^{2}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|\right)\left|\psi_{1}\right\rangle}{\frac{9}{25}\left\langle\phi_{1} \mid \phi_{1}\right\rangle+\frac{12}{25}\left\langle\phi_{1} \mid \phi_{2}\right\rangle+\frac{12}{25}\left\langle\phi_{2} \mid \phi_{1}\right\rangle+\frac{16}{25}\left\langle\phi_{2} \mid \phi_{2}\right\rangle} \\
& =\frac{\sum_{m=1}^{2} \sum_{n=1}^{2}\left\langle\psi_{1} \mid \phi_{m}\right\rangle\left\langle\phi_{m}\right| \cdot\left(\hat{B}\left|\phi_{n}\right\rangle\right)\left\langle\phi_{n} \mid \psi_{1}\right\rangle}{\frac{9}{25}+\frac{16}{25}} \\
& =\frac{\sum_{m=1}^{2} \sum_{n=1}^{2}\left\langle\psi_{1} \mid \phi_{m}\right\rangle\left\langle\phi_{m}\right| \cdot\left(b_{n}\left|\phi_{n}\right\rangle\right)\left\langle\phi_{n} \mid \psi_{1}\right\rangle}{1} \\
& =\sum_{m=1}^{2} \sum_{n=1}^{2} b_{n}\left\langle\psi_{1} \mid \phi_{m}\right\rangle\left\langle\phi_{m} \mid \phi_{n}\right\rangle\left\langle\phi_{n} \mid \psi_{1}\right\rangle \\
& =\sum_{m=1}^{2} \sum_{n=1}^{2} b_{n}\left\langle\psi_{1} \mid \phi_{m}\right\rangle \delta_{m n}\left\langle\phi_{n} \mid \psi_{1}\right\rangle \\
& =\sum_{n=1}^{2} b_{n}\left\langle\psi_{1} \mid \phi_{n}\right\rangle\left\langle\phi_{n} \mid \psi_{1}\right\rangle \\
& =\sum_{n=1}^{2} b_{n}\left\langle\phi_{n} \mid \psi_{1}\right\rangle *\left\langle\phi_{n} \mid \psi_{1}\right\rangle \\
& =\sum_{n=1}^{2} b_{n}\left|\left\langle\phi_{n} \mid \psi_{1}\right\rangle\right|^{2} \\
&
\end{aligned}
$$

Consequently, the probabilities of getting b_{1} and b_{2} are

$$
\begin{aligned}
& P\left(b_{1}\right)=\left|\left\langle\phi_{1} \mid \psi_{1}\right\rangle\right|^{2}=\left|\frac{3}{5}\left\langle\phi_{1} \mid \phi_{1}\right\rangle+\frac{4}{5}\left\langle\phi_{1} \mid \phi_{2}\right\rangle\right|^{2}=\left|\frac{3}{5}\right|^{2}=\frac{9}{25} \\
& P\left(b_{2}\right)=\left|\left\langle\phi_{2} \mid \psi_{1}\right\rangle\right|^{2}=\left|\frac{3}{5}\left\langle\phi_{2} \mid \phi_{1}\right\rangle+\frac{4}{5}\left\langle\phi_{2} \mid \phi_{2}\right\rangle\right|^{2}=\left|\frac{4}{5}\right|^{2}=\frac{16}{25}
\end{aligned}
$$

If the value b_{1} is measured, then the state vector changes to $\left|\phi_{1}\right\rangle$. If the value b_{2} is measured instead, then the state vector changes to $\left|\phi_{2}\right\rangle$. After the measurement of observable B, it's desired to measure observable A again. The aim is to compute the probability of getting a_{1} from the state $\left|\phi_{1}\right\rangle$ and the probability of getting a_{1} from the state $\left|\phi_{2}\right\rangle$. Due to normalization, $\left\langle\phi_{1} \mid \phi_{1}\right\rangle=\left\langle\phi_{2} \mid \phi_{2}\right\rangle=1$.

$$
\begin{aligned}
\sum_{n=1}^{2} a_{n} P\left(a_{n} \mid b_{1}\right)=\langle A\rangle & =\frac{\left\langle\phi_{1}\right| \hat{A}\left|\phi_{1}\right\rangle}{\left\langle\phi_{1} \mid \phi_{1}\right\rangle} \\
& =\frac{\left\langle\phi_{1}\right| \hat{I} \hat{A} \hat{I}\left|\phi_{1}\right\rangle}{1} \\
& =\left\langle\phi_{1}\right|\left(\sum_{m=1}^{2}\left|\psi_{m}\right\rangle\left\langle\psi_{m}\right|\right) \hat{A}\left(\sum_{n=1}^{2}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|\right)\left|\phi_{1}\right\rangle \\
& =\sum_{m=1}^{2} \sum_{n=1}^{2}\left\langle\phi_{1} \mid \psi_{m}\right\rangle\left\langle\psi_{m}\right| \cdot\left(\hat{A}\left|\psi_{n}\right\rangle\right)\left\langle\psi_{n} \mid \phi_{1}\right\rangle \\
& =\sum_{m=1}^{2} \sum_{n=1}^{2}\left\langle\phi_{1} \mid \psi_{m}\right\rangle\left\langle\psi_{m}\right| \cdot\left(a_{n}\left|\psi_{n}\right\rangle\right)\left\langle\psi_{n} \mid \phi_{1}\right\rangle \\
& =\sum_{m=1}^{2} \sum_{n=1}^{2} a_{n}\left\langle\phi_{1} \mid \psi_{m}\right\rangle\left\langle\psi_{m} \mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid \phi_{1}\right\rangle \\
& =\sum_{m=1}^{2} \sum_{n=1}^{2} a_{n}\left\langle\phi_{1} \mid \psi_{m}\right\rangle \delta_{m n}\left\langle\psi_{n} \mid \phi_{1}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=1}^{2} a_{n} P\left(a_{n} \mid b_{2}\right)= & \langle A\rangle=\frac{\left\langle\phi_{2}\right| \hat{A}\left|\phi_{2}\right\rangle}{\left\langle\phi_{2} \mid \phi_{2}\right\rangle} \\
& =\frac{\left\langle\phi_{2}\right| \hat{I} \hat{A} \hat{I}\left|\phi_{2}\right\rangle}{1} \\
& =\left\langle\phi_{2}\right|\left(\sum_{m=1}^{2}\left|\psi_{m}\right\rangle\left\langle\psi_{m}\right|\right) \hat{A}\left(\sum_{n=1}^{2}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|\right)\left|\phi_{2}\right\rangle \\
& =\sum_{m=1}^{2} \sum_{n=1}^{2}\left\langle\phi_{2} \mid \psi_{m}\right\rangle\left\langle\psi_{m}\right| \cdot\left(\hat{A}\left|\psi_{n}\right\rangle\right)\left\langle\psi_{n} \mid \phi_{2}\right\rangle \\
& =\sum_{m=1}^{2} \sum_{n=1}^{2}\left\langle\phi_{2} \mid \psi_{m}\right\rangle\left\langle\psi_{m}\right| \cdot\left(a_{n}\left|\psi_{n}\right\rangle\right)\left\langle\psi_{n} \mid \phi_{2}\right\rangle \\
& =\sum_{m=1}^{2} \sum_{n=1}^{2} a_{n}\left\langle\phi_{2} \mid \psi_{m}\right\rangle\left\langle\psi_{m} \mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid \phi_{2}\right\rangle \\
& =\sum_{m=1}^{2} \sum_{n=1}^{2} a_{n}\left\langle\phi_{2} \mid \psi_{m}\right\rangle \delta_{m n}\left\langle\psi_{n} \mid \phi_{2}\right\rangle
\end{aligned}
$$

Continue the simplification.

$$
\begin{aligned}
\sum_{n=1}^{2} a_{n} P\left(a_{n} \mid b_{1}\right) & =\sum_{n=1}^{2} a_{n}\left\langle\phi_{1} \mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid \phi_{1}\right\rangle & \sum_{n=1}^{2} a_{n} P\left(a_{n} \mid b_{2}\right) & =\sum_{n=1}^{2} a_{n}\left\langle\phi_{2} \mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid \phi_{2}\right\rangle \\
& =\sum_{n=1}^{2} a_{n}\left\langle\phi_{1} \mid \psi_{n}\right\rangle\left\langle\phi_{1} \mid \psi_{n}\right\rangle^{*} & & =\sum_{n=1}^{2} a_{n}\left\langle\phi_{2} \mid \psi_{n}\right\rangle\left\langle\phi_{2} \mid \psi_{n}\right\rangle^{*} \\
& =\sum_{n=1}^{2} a_{n}\left|\left\langle\phi_{1} \mid \psi_{n}\right\rangle\right|^{2} & & =\sum_{n=1}^{2} a_{n}\left|\left\langle\phi_{2} \mid \psi_{n}\right\rangle\right|^{2}
\end{aligned}
$$

Consequently, the probability of measuring a_{1} from state $\left|\phi_{1}\right\rangle$ and the probability of measuring a_{1} from state $\left|\phi_{2}\right\rangle$ are respectively

$$
\begin{aligned}
& P\left(a_{1} \mid b_{1}\right)=\left|\left\langle\phi_{1} \mid \psi_{1}\right\rangle\right|^{2}=\left|\frac{3}{5}\left\langle\phi_{1} \mid \phi_{1}\right\rangle+\frac{4}{5}\left\langle\phi_{1} \mid \phi_{2}\right\rangle\right|^{2}=\left|\frac{3}{5}\right|^{2}=\frac{9}{25} \\
& P\left(a_{1} \mid b_{2}\right)=\left|\left\langle\phi_{2} \mid \psi_{1}\right\rangle\right|^{2}=\left|\frac{3}{5}\left\langle\phi_{2} \mid \phi_{1}\right\rangle+\frac{4}{5}\left\langle\phi_{2} \mid \phi_{2}\right\rangle\right|^{2}=\left|\frac{4}{5}\right|^{2}=\frac{16}{25} .
\end{aligned}
$$

The tree diagram below illustrates the possible outcomes from start to end.

The two highlighted paths show the different (mutually exclusive) ways to get a_{1} at the end. Use the chain rule for conditional probability to obtain the probability of getting a_{1} after the measurement of observables, B and A.

$$
P\left(b_{1}\right) P\left(a_{1} \mid b_{1}\right)+P\left(b_{2}\right) P\left(a_{1} \mid b_{2}\right)=\frac{9}{25} \frac{9}{25}+\frac{16}{25} \frac{16}{25}=\frac{337}{625} \approx 0.54
$$

